Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TORC1 specifically inhibits microautophagy through ESCRT-0.

Identifieur interne : 000216 ( Main/Exploration ); précédent : 000215; suivant : 000217

TORC1 specifically inhibits microautophagy through ESCRT-0.

Auteurs : Riko Hatakeyama [Suisse] ; Claudio De Virgilio [Suisse]

Source :

RBID : pubmed:31041524

Descripteurs français

English descriptors

Abstract

Nutrient starvation induces the degradation of specific plasma membrane proteins through the multivesicular body (MVB) sorting pathway and of vacuolar membrane proteins through microautophagy. Both of these processes require the gateway protein Vps27, which recognizes ubiquitinated cargo proteins at phosphatidylinositol 3-phosphate-rich membranes as part of a heterodimeric complex coined endosomal sorting complex required for transport 0. The target of rapamycin complex 1 (TORC1), a nutrient-activated central regulator of cell growth, directly phosphorylates Vps27 to antagonize its function in microautophagy, but whether this also serves to restrain MVB sorting at endosomes is still an open question. Here, we show that TORC1 inhibits both the MVB pathway-driven turnover of the plasma membrane-resident high-affinity methionine permease Mup1 and the inositol transporter Itr1 and the microautophagy-dependent degradation of the vacuolar membrane-associated v-ATPase subunit Vph1. Using a Vps277D variant that mimics the TORC1-phosphorylated state of Vps27, we further show that cargo sorting of Vph1 at the vacuolar membrane, but not of Mup1 and Itr1 at endosomes, is sensitive to the TORC1-controlled modifications of Vps27. Thus, TORC1 specifically modulates microautophagy through phosphorylation of Vps27, but controls MVB sorting through alternative mechanisms.

DOI: 10.1007/s00294-019-00982-y
PubMed: 31041524
PubMed Central: PMC6744375


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TORC1 specifically inhibits microautophagy through ESCRT-0.</title>
<author>
<name sortKey="Hatakeyama, Riko" sort="Hatakeyama, Riko" uniqKey="Hatakeyama R" first="Riko" last="Hatakeyama">Riko Hatakeyama</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland. Claudio.DeVirgilio@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31041524</idno>
<idno type="pmid">31041524</idno>
<idno type="doi">10.1007/s00294-019-00982-y</idno>
<idno type="pmc">PMC6744375</idno>
<idno type="wicri:Area/Main/Corpus">000282</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000282</idno>
<idno type="wicri:Area/Main/Curation">000282</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000282</idno>
<idno type="wicri:Area/Main/Exploration">000282</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TORC1 specifically inhibits microautophagy through ESCRT-0.</title>
<author>
<name sortKey="Hatakeyama, Riko" sort="Hatakeyama, Riko" uniqKey="Hatakeyama R" first="Riko" last="Hatakeyama">Riko Hatakeyama</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland. Claudio.DeVirgilio@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, 1700, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current genetics</title>
<idno type="eISSN">1432-0983</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Endosomal Sorting Complexes Required for Transport (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Microautophagy (genetics)</term>
<term>Models, Biological (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Complexes de tri endosomique requis pour le transport (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Endosomal Sorting Complexes Required for Transport</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Microautophagy</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Biological</term>
<term>Mutation</term>
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexes de tri endosomique requis pour le transport</term>
<term>Modèles biologiques</term>
<term>Mutation</term>
<term>Phosphorylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nutrient starvation induces the degradation of specific plasma membrane proteins through the multivesicular body (MVB) sorting pathway and of vacuolar membrane proteins through microautophagy. Both of these processes require the gateway protein Vps27, which recognizes ubiquitinated cargo proteins at phosphatidylinositol 3-phosphate-rich membranes as part of a heterodimeric complex coined endosomal sorting complex required for transport 0. The target of rapamycin complex 1 (TORC1), a nutrient-activated central regulator of cell growth, directly phosphorylates Vps27 to antagonize its function in microautophagy, but whether this also serves to restrain MVB sorting at endosomes is still an open question. Here, we show that TORC1 inhibits both the MVB pathway-driven turnover of the plasma membrane-resident high-affinity methionine permease Mup1 and the inositol transporter Itr1 and the microautophagy-dependent degradation of the vacuolar membrane-associated v-ATPase subunit Vph1. Using a Vps27
<sup>7D</sup>
variant that mimics the TORC1-phosphorylated state of Vps27, we further show that cargo sorting of Vph1 at the vacuolar membrane, but not of Mup1 and Itr1 at endosomes, is sensitive to the TORC1-controlled modifications of Vps27. Thus, TORC1 specifically modulates microautophagy through phosphorylation of Vps27, but controls MVB sorting through alternative mechanisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31041524</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0983</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>65</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2019</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Current genetics</Title>
<ISOAbbreviation>Curr Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>TORC1 specifically inhibits microautophagy through ESCRT-0.</ArticleTitle>
<Pagination>
<MedlinePgn>1243-1249</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00294-019-00982-y</ELocationID>
<Abstract>
<AbstractText>Nutrient starvation induces the degradation of specific plasma membrane proteins through the multivesicular body (MVB) sorting pathway and of vacuolar membrane proteins through microautophagy. Both of these processes require the gateway protein Vps27, which recognizes ubiquitinated cargo proteins at phosphatidylinositol 3-phosphate-rich membranes as part of a heterodimeric complex coined endosomal sorting complex required for transport 0. The target of rapamycin complex 1 (TORC1), a nutrient-activated central regulator of cell growth, directly phosphorylates Vps27 to antagonize its function in microautophagy, but whether this also serves to restrain MVB sorting at endosomes is still an open question. Here, we show that TORC1 inhibits both the MVB pathway-driven turnover of the plasma membrane-resident high-affinity methionine permease Mup1 and the inositol transporter Itr1 and the microautophagy-dependent degradation of the vacuolar membrane-associated v-ATPase subunit Vph1. Using a Vps27
<sup>7D</sup>
variant that mimics the TORC1-phosphorylated state of Vps27, we further show that cargo sorting of Vph1 at the vacuolar membrane, but not of Mup1 and Itr1 at endosomes, is sensitive to the TORC1-controlled modifications of Vps27. Thus, TORC1 specifically modulates microautophagy through phosphorylation of Vps27, but controls MVB sorting through alternative mechanisms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hatakeyama</LastName>
<ForeName>Riko</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Virgilio</LastName>
<ForeName>Claudio</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8826-4323</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland. Claudio.DeVirgilio@unifr.ch.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>310030_166474/1</GrantID>
<Agency>Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Genet</MedlineTA>
<NlmUniqueID>8004904</NlmUniqueID>
<ISSNLinking>0172-8083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056827">Endosomal Sorting Complexes Required for Transport</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056827" MajorTopicYN="Y">Endosomal Sorting Complexes Required for Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000080551" MajorTopicYN="Y">Microautophagy</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Endosomal sorting complex required for transport (ESCRT)</Keyword>
<Keyword MajorTopicYN="N">Microautophagy</Keyword>
<Keyword MajorTopicYN="N">Multivesicular body</Keyword>
<Keyword MajorTopicYN="N">Target of rapamycin complex 1 (TORC1)</Keyword>
<Keyword MajorTopicYN="N">Vps27</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31041524</ArticleId>
<ArticleId IdType="doi">10.1007/s00294-019-00982-y</ArticleId>
<ArticleId IdType="pii">10.1007/s00294-019-00982-y</ArticleId>
<ArticleId IdType="pmc">PMC6744375</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1999 Sep 20;146(6):1227-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10491387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1992 Dec;3(12):1389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1493335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 May 8;173(3):327-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16651382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Oct 4;25(19):4436-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16977312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Nov;8(11):917-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17912264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 14;135(4):714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Dec;20(24):5276-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19828734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Dec;10(12):1856-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Feb;30(4):1049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Dec;30(24):5598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20956561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2011 Jul 19;21(1):77-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21763610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2011;27:107-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21801009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 23;147(5):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2012 Mar;13(3):468-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Jun 24;30(7):708-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22729030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4510-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Jun 1;126(Pt 11):2534-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23549786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jul;10(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23749301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Apr;25(7):1171-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jun 13;289(24):16736-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Aug 7;55(3):409-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1989 Jul;109(1):93-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2526133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2014 Dec;34(24):4447-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25266656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Feb 1;26(3):554-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25501366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2015 Apr;33:55-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25554914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Apr 22;4:e07736</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25902403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Sep 22;12(11):1876-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26344761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Feb;26(2):148-159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2016 Mar 15;35(6):561-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26888746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2016 May 8;428(9 Pt A):1681-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26908221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2017 Feb;63(1):35-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27233284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Dec 15;27(25):4043-4054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27798240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2017 Jun;63(3):531-551</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27812735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Apr 7;292(14):5737-5747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28196862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Jun 29;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28661397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2017 Oct 2;216(10):3263-3274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28838958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2018 Feb;64(1):155-161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28856407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2018 Jun;40(6):e1800008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29708272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2018 Oct 2;504(2):505-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30201264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2019 Apr;65(2):607-619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30506264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2019 Jan 17;73(2):325-338.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30527664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2019 May;15(5):915-916</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30732525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 10;270(6):2525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7852314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jun;7(6):985-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8817003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jan 30;14(2):115-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9483801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Dec 11;95(6):847-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9865702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Fribourg</li>
</region>
<settlement>
<li>Fribourg</li>
</settlement>
<orgName>
<li>Université de Fribourg</li>
</orgName>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Fribourg">
<name sortKey="Hatakeyama, Riko" sort="Hatakeyama, Riko" uniqKey="Hatakeyama R" first="Riko" last="Hatakeyama">Riko Hatakeyama</name>
</region>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000216 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000216 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31041524
   |texte=   TORC1 specifically inhibits microautophagy through ESCRT-0.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31041524" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020